Mechanism of transient outward K(+) channel block by disopyramide.
نویسنده
چکیده
The block of the transient outward K(+) current (I(to)) by disopyramide was studied in isolated rat right ventricular myocytes using whole cell patch-clamp techniques. Disopyramide at a concentration of 10 to 1000 microM reduced peak I(to) and accelerated the apparent rate of current inactivation. The onset of block was assessed using a double pulse protocol with steps from -70 to +50 mV. As the duration of the first (conditioning) pulse was increased from 1 to 50 ms, block was increased. Further prolongation of the conditioning pulse resulted in relief of block, which was nearly complete with a 1-s conditioning pulse. In the absence of drug, the recovery from inactivation of I(to) at -70 mV was fast and best fit with a single exponential function having a time constant of 33 +/- 13 ms. In contrast, in the presence of 100 microM disopyramide, recovery from apparent inactivation was biexponential with time constants of 35 +/- 13 ms and 7.16 +/- 1.5 s. The time course of the slow component was used to estimate recovery of channels from block by disopyramide. Recovery from block was voltage-dependent, suggesting that disopyramide was trapped by the open channel. Taken together, these results suggest that disopyramide rapidly blocks channels in the open state and that unblock occurs from the inactivated state.
منابع مشابه
جریانهای یونی کانالهای پتاسیمی و کلسیمی در سلولهای ایزوله شده عضله صاف سمینال وزیکول خوکجه و مهاراین جریانها بوسیله Glibenclamide
Smooth muscle cells of seminal vesicle exhibit excitatcry junction patential on nerve stimulation and can fire evoked) action potential (1). However) the type of ion channels that underlie this electrical activity have not been described. I have investigated the type and pharmacology of ion channel in freshly isolated smooth muscle cells from the guinea-pig seminal vesicle using whole-cell patc...
متن کاملBlock of transient outward-type cloned cardiac K+ channel currents by quinidine.
The antiarrhythmic drug quinidine has been shown to block several types of K+ channel currents in cardiac preparations including the transient outward current (Ito). To characterize the molecular mechanism of quinidine block, a cloned Ito-type cardiac K+ channel (RHK1) was expressed in Xenopus oocytes, and drug effects were examined on whole-cell and single-channel currents. Extracellular appli...
متن کاملActivation block and trapping of penticainide, a disopyramide analogue, in the Na+ channel of rabbit cardiac Purkinje fibers.
The blocking mechanism of the Na+ channel by penticainide, a disopyramide analogue, was studied in rabbit cardiac Purkinje fibers. Na+ channel activity was measured directly by recording the slowly inactivating Na+ current or indirectly by measuring Vmax. The two-microelectrode technique was used to measure currents under voltage-clamp conditions or to impose different degrees and durations of ...
متن کاملKv1.5 open channel block by the antiarrhythmic drug disopyramide: molecular determinants of block.
Kv1.5 is considered to be a potential molecular target for treatment of atrial fibrillation or flutter. Disopyramide is widely used in the treatment of atrial flutter and/or atrial fibrillation. The present study was undertaken to characterize the effects of disopyramide on currents mediated by Kv1.5 channels and to determine the putative binding site involved in the inhibitory effects of disop...
متن کاملAnti-cholinergic effects of quinidine, disopyramide, and procainamide in isolated atrial myocytes: mediation by different molecular mechanisms.
Effects of quinidine, disopyramide, and procainamide on the acetylcholine (ACh)-induced K+ channel current were examined in single atrial cells, using the tight-seal, whole-cell clamp technique. The pipette solution contained guanosine-5'-triphosphate (GTP) or guanosine-5'-O-(3-thiotriphosphate) (GTP-gamma S, a nonhydrolysable GTP analogue). In GTP-loaded cells, not only ACh but also adenosine ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 290 2 شماره
صفحات -
تاریخ انتشار 1999